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’ 7 r] (‘i ;Lx | _ABSTRACT A\

General categories of possible fluid systems are described, including
Newtonian, purely viscous non-Newtonian, and elastico-viscous non-Newtonian.
The recent interest in the turbulent shear flow of real elastico-viscous
fluids and their relation to the aerospace sciences and technologies are
discussed. An analysis of this problem is presented in terms of the viscous
fluid properties, the Prandtl mixing length concept, and a stability criterion.
Experiments are described which provide data on frictional drag and velocity
profiles in fully developed pipe flow of several fluids presumed to be elastico-
viscous. The experimental results are compared to the analysis with respect
to the thickness of the viscous sublayer, shape of the velocity profile, varia-

tion of the mixing length constant and the effects of pipe diameter.
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INTRODUCTICN

An elastico-viscous fluid is one which exhibits both elastic and viscous
characteristics. In order to describe the properties of such fluids, it is
necessary to specify the relation of the basic variables for the deformation of
materials as functions of time, i.e., how the shear stress (as a function of
time) is related to the strain (as a function of time). The properties can be
determined by choosing a "mechanical model" which phenomenalogically duplicates
the observed time dependence of the material. 3Buch a model, for example, is

a spring in series with a dashpot.

The above view of elastico-viscous materials (fluids) must now be recon~-
ciled with the accepted general classification of' fluids into two categories;
elther Newtonian or non-Newtonian. The following set of terms refers to the
types of fluld systems of interest here:

A. Newtonian (only viscous characteristics, with stress proportional

to rate of strain, or shear rate).

B. Non-Newtonian

1. Purely viscous (only viscous characteristics, stress not pro-

portional to shear rate).

2. Elastico-viscous (both viscous and elastic characteristics,

stress may or may not be proportional to shear rate).

The turbulent shear flows to be discussed are those which are constrained,
both fully constr:ined as in the case of flow in a pipe or channel and half

constrained as in the case of a boundary layer {low.

The turbulent shear flow of elastlco-viscous non-Newtonian fluids is a
new problem in fluid mechanics. The complex fluid mechanical situation of
turbulent shear flow coupled with the complex fluid properties of elastico-
viscous fluids yields experimental results which do not agree with the empiri-
cal relations evolved for the turbuleni flow of Newtonian fluids. Therefore,
new approaches in the analysis of turbulent shear [{low are necded; and, since
analyses of turbulent flow are still largely the applicatioh of simple models
or criteria to experimental data, extensive experimental data on the flow of
these flulds are needed also. The purpose of this report, then, is twofold:
(l) to define better the actual problem of interest throwsh separating the
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new and interesting facets from those which are already understood; and (2)
to provide, through experiments and in the light of a new analysis, more basic
information about the momentum transport process through a turbulent shear

layer.

In a physical sense the flulds of interest here are liquids composed of
small concentrations (1 percent by weight or less) of high molecular weight
polymers dissolved or hydrated in Newtonian solvents (although other types of
fluids have these characteristics). These fluids appear to be very little
different physically from the solvents alone, other than having increased
viscosity. The study of the flow of such liquids has direct applications in
the aerospace field. The application can be shown through the most easily ob-
servable characteristic of the turbulent flow of these elastico-viscous liquids,
which is a large reduction in drag due to fluid friction compared with the flow
of a Newtonian, or purely viscous non-Newtonian,liquid with the same density
and viscosity (or distribution of viscosities with shear rate). This single
aspect makes an understanding of the flow necessary in order to use this drag
reduction benet'iclally or simply to make accurate predictions of the perfor-
mance of such fluids in ordinary engineering applications. An example of the
former use of these fluids is the transpiration of elastico-viscous fluids
into the turbulent boundary layer on marine vehicles in order to reduce skin
friction drag or boundary layer Induced noise. Examples of the latter use
are, in particular; flow through ducts of liquid rocket fuels which have elas-
tico-viscous properties; and, in general, turbulent flow of these fluids in
any system where viscous drag, severity of mixing, pumping capacity, or flow

rate are major considerations.

Most of the serious study of turbulent flow of elastico-viscous fluids
has begun within the past five years. The major contributions have come in
the form of experiments in the simplest and most versatile flow apparatus
available - a long circular pipe.

All of the previous investigators recognized their experimental fluids to
be non-Newtonlan, to the extent that the viscous properties were examined and
were found to be non-linear with shear rate. In fact, all of the fluids de-
scribed in the literature were found to give a decreasing viscosity (defined
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as the shear stress divided by the shear rate) for increasing shear rate when
subjected to a simple shearing motion. This characteristic is called "shear-
thinning" (or less descriptively, "pseudoplastic"). This led to attempts at

correlation of the turbulent pipe flow data by use of a flow model valid for

non~Newtonian fluids which are purely viscous and isotropic, given in terms

of two constants which are properties of the fluid,

T = a( %3 » o, (1)

which describes shear thinning fluids for n < 1, Newtonian fluids for n = 1.

No attempts to include the effects of elasticity were made in the pre-
vious investigations because in some cases the authors were not fully aware
that the fluids vwere elastico-viscous and, more significantly, because an
analysis of the rheology of these fluids has not been developed sufficiently.
It should be noted that sketcﬁy evidence on the fluids used in the turbulent
Tlow experiments indicate that they possessed small elasticity. The lack of
experimental data on the elastic properties of these fluids makes it all but
impossible to make practical use of the general rheological models which de-
scribe such fluids. More will be said below concerning the rheology of these
fluids.

Although the interest in this paper is focused on the basic turbulent
momentum transport process, the state of knowledge to the present can be traced
through the studies of frictional drag of elastico-viscous fluids. In 1948
Tomsl performed turbulent pipe flow experiments with a dilute polymer solution,
which Savin32 later showed to represent a drag reduction over that predicted
by viscous theory. It should be noted here that Dodge and Metzner3, by analysis
and experiments, showed that a purely viscous non-Newtonian fluid described by
Eq. (1) would provide a small amount of drag reduction. Dodge and Metzner also
conducted the same experiments with a synthetic polymer, carboxymethylcellulose,
which was later shown to be elastico-viscous and which showed a much greater
drag reduction than predicted or observed for purely viscous non-Newtonian
fluids. Shaver and Merrill5 and Ousterhout and Hall6 showed the same trends
to greater drag reduction by experiments with elastico-viscous fluids. Var-

ious observations and conclusions regarding the different trends in frictional
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drag were made by these investigators, but more detailed data on the flow it-
self was needed to achleve any greater understanding of the situation. Clearly,
more information about the basic flow properties was needed also, but very few
results applicable to the problem of turbulent flow of liquids with such small
elasticity as used in the experiments have appeared in the literature.

In view of the previous investigations, it was felt that a series of tur-
bulent pipe flow experiments was needed to provide sufficient data to analyze
the problem in terms of the known variables of turbulent flow.

.




ANALYSIS

Because the functional dependence of the elastic properties on the flow
parameters cannot be given, as will be discussed below, a complete dimensional
analysis of the turbulent shear flow cannot be made. If, instead, it is as-
sumed that the elasticity affects, in a measurable way, the model for the tur-
bulent shear layer which has proved successful for Newtonian fluids, then an
analysis can be performed in terms of the measurable qpantities. In this way,

the assumptions leading to the analysis can be checked experimentally.

The model used for the turbulent shear flow or, more descriptively, the
transport of momentum through a turbulent shear layer to a constraining surface,
consists of a viscous sublayer (not necessarily thin) near the wall and tur-
bulent flow in the outer part of the layer. The sublayer and turbulent layer
are assumed to be affected predominantly by viscous and turbulent shear stresses
in each region, respectively, with the extent of either region determined by
the stability of the viscous flow.

The analysls of such a model can be performed in terms of measurable flow

quantities if the following assumptions are made:

(1) elasticity modifies the momentum transport process in the turbulent
region, but the general Prandtl mixing length concept applies,

(2) flow in the viscous sublayer can be described from a knowledge of the

viscous properties of the fluid,

(3) the extent of the viscous sublayer is represented by a stability cri-

terion relating the viscous stress to the turbulent stress.

Fluid Properties

When one considers the rheological properties of elastico-viscous fluids,
it is necessary to consider a model of some generality, since there are few ex-
perimental measurements which allow simplifying assumptions to be made. There
1s no analogy to Newton's law of viscosity for fluids with elasticity. Several

models, including those of Oldroyd8, Rivlin-FEricksen »10 and Coleman-N'ollll are

being used for various types of e)q:oerimentsle’]‘3’]'LL

to determine elastic pro-
perties of fluids. The lack of experimental data on the dependence of elas-
ticity on frequency, scale, and isotropy of turbulent motion, however, pre-

vents the use of these general mathematical models to analyze turbulent motion.
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If, as was assumed above, the flow in the sublayer can be described from
the viscous properties, and if it is further assumed that the fluid is isotro-
pic, then the power-law expression of Eq. (1) can be used to analyze the flow
in the sublayer. This formulation, of course, permits both shear-thinning

and Newtonian viscous behavior.

Generalized Velocity Profile

Although elastic properties aré not used explicitly, the elasticity is
assumed to affect the mixing process, as described by the Prandtl mixing length
concept. Thus, the outer velocity profile can be related, through the mlxing
length theory, to the elasticity.

Acting, then, on the assumption that the same general considerations for

turbulent mixing hold for both inelastic and elastic fluids, the shear stress
>

in turbulent flow can be written, following Prandtll in terms of the gradient

of the time-averaged velocity:

T = A g%
- (2)

du

= p€ Si

which describes the stresses present in the case of mean parallel flow, where,

This means that 1 1is an "apparent" shear stress parallel to the streamlines

and 1s composed of both laminar and turbulent shear stresses. The shear stress
due to turbulent mixing is assumed to be large with respect to the laminar
shear stress. This, then, presents A and € as "virtual” viscosity and kinematic
viscosity coefficients, respectively, due to the predominant turbulent stresses
present. There follows now a summary of Prandtl's concept of a length which
can be related to the virtual viscosity. GSome aspects of the concept are
physically indefensible; however, 1t has been proved useful. Eq. (2) is use-
ful in that it demonstrates the use of the Prandtl mixing length concept

which will be summarized below.



In order to use the relation for shearing stress given by Eq. (2) it is
necessary to find a relation between the virtual viscosity and the mean velo-
city field. Following Prandtl, it is possible to state through dimensional
analysis an expression for the shearing stress in terms of the mixing length,
L.

2 du du
w=ot Izl g - (3)

The mixing length, ¢, may be supposed to be something like the mean free path
for microscopic motion of molecules except, of course, ¢ is related to macro-
scopic motion of lumps of fluid. The mixing length was actually conceived
from the consideration of a two-dimensional turbulent shear flow. & is pro-
portional to the distance which a lump of fluid having the mean velocity of

the layer to which it belongs must move perpendicular to the direction of

flow. The criterion for movement in this direction is that the difference be-
tween its velocity and the mean velocity of the new layer should equal the

mean deviation of velocity in the turbulent flow.

The reasoning used by Prandtl in arriving at the mixing length concept is
mentioned above because it 1s felt that the reasoning itself should hold as
well for one type of turbulent mixing as another; therefore, even if there
should be a difference in the mixing processes between Newtonian and non-
Newtonian fluids, Prandtl's general dimensional analysis should still be valid.
The concept has proved to be useful for calculating many types of flows of
Newtonian fluids. The general usefulness has been attributed primarily to the
similarity of the mixing of the various flows. If Eq. (3) is substituted into
Eq. (2) it is found that

c = IR ()

Although the mixing length is an unknown, Eq. (4) is of great help in de-
termining the shear stress because L is not a property of the fluid, but a
purely local function. It is assumed that, near the wall, the mixing length

is proportional to y, thus

Lt = Kky, . (5)



‘ where k is a dimensionless constant which must be determined from experiments.

CENTER LINE OF PIPE,
EDGE OF SHEAR LAYER

B 9]
y ) v o
O O TURBULENT

O
VISCOUS > TRANSITION

— Pl X
/e

Figure 1 Two-Dimensional Turbulent ihear layer

Using the second assumption, that the flow in the viscous sublayer can
be described from the viscous properties only, a generalized expression can be
developed for the sublayer. Referring to Fig. 1, the sublayer extends from
the wall (y =0) to y = yLVand is described by a linear velocity profile and a
constant shear stress equal to that at the wall, T Thus, since the sublayer
is affected by primarily viscous stresses, liqg. (1) can be written for the velo-

city, u, at a distance from the wall, y, through the sublayer,
u n
1. 0= al+—) . (6)

2
Defining the friction velocity, u, = ’Io/p , allows the rearrangement of
Eq. (6) to give

W2 o- 2 ()
.- * p N ’

yS .




or,

) | (7

Eq. (7) is valid through the sublayer. The velocity profile in the sublayer
can then be described by

1
¢ = o (y = y,) (8)
nn —L’
wWhere:
¢ = =
Uy
2 -n n
L P Uy y
Tha = a ¢

It should be noted that M is a Reynolds number written in terms of the fric-
tion velocity, distance from the wall, and the molecular fluid properties.
Eq. (8) reduces to the velocity profile in the viscous sublayer for Newtonian
flulds ( n =1, a = u).

If, as assumed, the edge of the sublayer 1s located by the stability of
the sublayer, then a criterion proposed by van Driest and Blumerl6 for New-
tbnian fluids can be extended to include the effects of elasticity. The
criterion states that the ratio of turbulent to viscous stress required for
transition from laminar to turbulent flow to occur is constant. Writing
this expression across the turbulent shear layer in terms of Egs. (1) and (3)

glves

o t? (82
[ dy ] = constant (9)

du \n
= (F) y = ¥

Making the approximation of Eq. (5) glves




[ pkzy;('g_;)z-n

] = constant,
a

y=yL

vhich can be rearranged after substitution of T and u, to yleld

1
n 2-n -
fe] yL u* n
k ( — ) = constant, (10)
or
1
k (n )n = constant. (11)

L

It is interesting to note that Eq. (11) predicts what has been observed
experimentally for Newtonlan fluids, i.e., the product of k and L' is con-
stant for virtually all types of turbulent shear flows; indeed botﬁ k and T,
are constants, being universally 0.4t (0.36 to 0.41) and 11.5, respectivelyl5L
Anticipating the experimental results for elastico-viscous fluids, it is sug-~
gested that the constant on the right-hand side of Eq. (11) is actually the
"universal" constant and that if the mixing-length constant, k, is changed, then
the sublayer thickness will change accordingly.

Carrying the analysis into the turbulent region of the shear layer, assum-
ing that the viscous sublayer flow breaks up immediately into turbulent flow
at Yis Eq. (3) can be written in terms of the wall shear stress:

2 , du 2
T, 0= pt e )", (12)
where the time-averaged notation is dropped since no instantaneous values will
be considered here. The combination of Eqs. (5) and (12), together with
Prandtl's approximation of constant shear stress through the turbulent region,
yields

’ (13)

«=]10=




which can be integrated to give

u 1
ol clny+ G : : (14)

where C is a constant of integration.

Eq. (14) can be rewritten in terms of the generalized coordinates as

¢ = 52 10, nm +C (yzy) (25)

The constant on the right side of Eq. (11) is evaluated for Newtonian fluids,
being 4.6, and Eqs. (8) and (11) are applied to Eq. (15) as a single boundary

condition at y = Yie Eq. (15) can then be written in terms of the generalized
velocity and normal variables, and the mixing length constant:

1| 2.3 4.6
o = x [:T loglo 1, + b6 - 2.3 lOgIO T] (y 2 yL) . (16)

It should be noted that the von Karman mixing length theory17 glves the

same result as Eq. (16) if Egs. (8), (11) and (13) are anticipated as boundary
conditions. It also should be noted that Eq. (16) reduces to the expression
for Newtonian fluids given by PrandtllS as

® = 5.75 log, 1+ 5.5 (17)

Summarizing, the velocity profiles in the two assumed regions of the tur-

bulent shear layer are given by:

1
¢ = g 10 (y=yp),
and
1| e k.
[} = E I: —n§- loglo T]n + )4‘.6 - 2-3 loglo “Eé ] ( y = yL)

It can be seen that the two profiles intersect at y = Yy but with different
slopes. IExperiments with turbulent shear flow of Newtonian fluids show a tran-
sition region where a gradual change from the sublayer profile to the turbu-
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lent region profile takes place; however, the data approach the formulations

further into the viscous and turbulent regions.
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EXPERIMENTS

Apparatus and Procedure

The polymer used in this study was guar gum, modified to the specifica-
tions of the Western Company and designated commercially by that company as
J-2P. Guar gum is a natural polymer which hydrates in water. The guar mole=-
cule is essentially a straight chain with high molecular weight, and is chemi-
cally classified as a polysaccharide. When fully hydrated in water, small con-
centrations (O to .5%) of the.guar appear only to increase the gross viscosity
of the water; although, at higher concentrations (.5 to 5%) the fluid exhibits
both increased gross viscosity and gross elasticity. In addition, at the higher
concentrations, the fluid will eclimb a rotating rod, rather than form a vortex
around it. This phenomenon indicates a certain type of normal stress present
and is predicted by one of the models for elastico-viscous fluidsa. With
these qualitative indications of elasticity for the higher concentrations, it
was assumed that the fluids used possessed some elasticity at the lower con-

centrations.

Four concentrations of the J-2P in water were used in the flow experiments:
0.05, 0.1, 0.2, and O.4 percent by weight. The variation of shear stress with
shear rate as the fluid undergoes simple shear was determined with a Fann V-G
coaxial cylinder viscometer in the range of 3 to 1,000 sec"l, and with a modi-
fied Merrill-Brookfield coaxial cylinder viscometer in the range of 10,000 to
200,000 sec_l. This range of shear rates extends slightly beyond the largest

value of shear rate encountered in the pipe flow experiments.

The pipe flow experiments were carried out in a recirculating system with
two sections of smooth extruded aluminum tubing of alternate pipe sizes of 0.65 and
1.43 inches inside dlameter . A twenty foot entrance length was provided for
both pipes to ensure full development of the flow ahead of the test section.
The test sectlion was instrumented with static pressure ports located at several
intervals to measure the pressure drop due to friction, and with a total pres-
sure probe mounted on a traverse so that, when coupled with a static pressure
port in the same plane, the dynamic pressure in the stream could be measured
as a function of radial position. The outside diameter of the probe tip was



0.042 inches. A positive displacement flow meter was used to measure the volume
flow rate during the experiments. The two centritfugal pumps placed in series
enabled water to be pumped in the larger pipe at flow rates up to 200 gallons
per minute. A schematic diagram of the apparatus is seen in Fig. 2.

The total pressure traversing mechanism was designed to provide positive,
continuous location of the probe in the tube by means of a micrometer drive
and detection of the wall position by means of an electrical circuit consisting
of an insulated probe and the electrically conducting wall.

The concentrations of 0.1 and 0.2 percent by weight were run in both pipes,
and the 0.05 and 0.4 percent concentrations were run only in the 0.65 and 1.43 -
inch pipes, respectively. Measurements of pressure drob per unit length of
pipe were made for all concentrations over the full range of possible flow
rates. In addition, velocity profile measurements were made at representative

flow rates within the range of the pressure drop measurements.
- Results

The results of the viscometer tests with the various concentrations of
J=-2P are shown in Fig. 3, where the shear stress is plotted versus shear rate,
logaéithmically, over several cycles. The curves drawn through the data make
up a family, shifting from essentially a straight line parallel to that for
water for 0.05 percent to a curve approaching the siope of the curve for water
at elther extreme of shear rate for O.4 percent. Thus, the curve for 0.05 per-
cent shows no variation of viscosity with shear rate, while the curves for
0.1, 0.2, and 0.4 percent are progressively more shear-thinning for increasing
concentration. Also included for purposes of comparison is the curve for a
0.4 percent concentration of CMC-T0 in water. It should be noted that the on-
set of turbulence apparently appears around l.O5 sec -1 for the 0.05 and 0.1
percent J-2P solutions indicated by the sudden increase in the shear stress
for increasing shear rate past that poiht.

The power-law relation given by Eq. (1) was matched to the data of Fig.
3 in the region of shear rates between lO3 and lO5 sec_l. The constants de-
termined in this manner are listed in Teble 1. '

~14-
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TABLE I

POWER-LAW CONSTANTS

Fluid n a (-c:*i:—:-“;—-i-_- o )
0.05% J-2P 1.0 0.022
0.1 % J-2P 0.81 0.12
0.2 % J-2P 0.71 0.48
O.4 % J-2P 0.56 3.38
0.04k% CMC-TO 0.62 3.03

The values in Table 1 were used to reduce the data from the turbulent pipe
flow experiments, since the maximum {wall) shear rate values of the experi-

ments fell within the range of shear rates used to calculate the constants.

The basic results of the measurements of pressure drop due to friction

for turbulent flow are shown in Figs. 4 and 5. Friction factor, defined by

f = = » (18)

was plotted versus the equivalent Reynolds number for water, Res, defined by
2D '
Re. = B—=— (19)
5 (5
water

Tb vwas determined from the measured pressure drop per unit length, assuming

fully developed flow, by means of the force balance:

. . R oa
o 2 dx °

Data are shown for the flow of pure water and concentrations of 0.05, 0.1,
0.2, and 0.4 percent J-2P in the two pipes. Also shown are the derived ex-
pression and empirical formulation for fully-developed laminar and turbulent

-17-
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flow of Newtonian fluids through a pipelg. These are given by

£ = ﬁ%é (1aminar) (20a)
]
° 1
1 = 4.0 10g (Re_ f®) -0.40 (turbulent) (20b)
fz

The friction factors for the polymer solutions plotted in these coordi-
nates are seen to fall below the friction factors for Newtonian fluids, with
two exceptions which will be shown below to represent laminar and transitional

flow.

A relation for laminar flow of purely viscous power~law fluids analagous
to Eq. (20a) for Newtonian fluids can be derived. The resultant expression
for friction factor is

l6a [2(3+'I1'1')]n

r = 2-n _n 3 ? (21)
pu D

for which Eq. (20a) is seen to be a special case, for n = 1 and a = u. Eq.
(21) can be rewritten by defining new variables as
16

f = — (22)

Ren Wn

where Re and ¥ are defined from Eg. (21).

The friction factor data of Figs. 4 and 5 have been plotted in terms of
Ren Wn in order to obtain a better comparison with Newtonian fluids in both
the laminar and turbulent regions. This is shown in Fig. 6. It appears that
the variables of Eq. (22) do correlate the data in the laminar region, as
evidenced by the trends of the turbulent data and from the lone data point
for O.4 fercent J-2P,

Here again, the friction factors for Ren Wn values which should cer-
tainly represent turbulent flow for Newtonian fluids are much lower than those
for Newtonian fluids. Something which is pointed out by plotting the data
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in this manner is the effect of diameter on the correlation. For the con-
centrations run in both pipe sizes (0.1 and 0.2 percent) the data for the

two pipe sizes are seen to lie on separate curves.

Another interesting point to be seen in Fig. 6 is that there is a trend
with higher concentration (more shear thinning and presumably more elasticity)
and smaller pipe diameter for the friction factor data to follow an extension
of the theoretical laminar curve to very low values of friction factor.

The basic velocity profile data shown in Figs. 7 and 8 were used to
determine the variation of mixing length,!, as defined in Eq. (3), with dis-

15 that the shear stiress

tance from the wall. The gross assumption of Prandtl
through the shear layer is equal to the wall shear stress, T, Was applied.
Therefore, for a given profile, the measurement of T and the calculation
from the measured profile of du/dy as a function of y was used in Eq. (3)

to calculate ¢ as a function of y. The results of these calculations are
shown in Figs. Y and 10. As for Newtonian fluids, the variation of L vs. y
was seen to approach an asymptote near the wall and the approximation of

Eq. (5) was applied to determine the mixing length coefficient, k, for each
profile. In each case the mixing length constants determined in this way
were found to be smaller than the universal constant for Newtonian fluids.
For a given fluid (concentration of J-2P) k appears to vary with pipe dia-
meter and possibly with Reynolds number. It should be noted that the calcu-
lation of k carries an estimated uncertainty of plus or minus 15 percent of
the stated value. This is due to the compounded uncertainty incurred by
determining the local slope of a curve drawn through experimental data points
and squaring the result, as reqnifed by Eq. (3). Even with this uncertainty
in mind, however, it is possible to say that k decreases with decreasing pipe
diameter, for the same Reynolds number range. The trend of k with Ren is

not clear as it does lie within the stated uncertainty in most cases and the

data are not extensive enough to define a trend.

Figs. 11 through 16 present the data for all of the fluids used in the
experiments, and the data for another elastico-viscous fluid taken from the
literatures, in terms of the variables defined by REq. (8). Also shown in
these figures are the equations derived for the viscous sublayer and the
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turbulent region, Egs. (8) and (16), respectively. Appropriate experimental
values of n, a and k were used in the calculations. The values of k chosen
for the calculations were considered typical and in some cases two values of

k were chosen to show the spread in the experimental values.

The data for water shown in Tig. 11 are seen to be in good agreement with
the semi-logarithmic relation for Newtonian fluids given by Eq. (17) with no

data indicated in the sublayer region.

The velocity profiles for 0.05 percent J-2P, seen in Fig..12,is one of
the most interesting since the viscometer measurements for that fluid indi-
cated no shear-thinning; i.e., n = 1. The data are seen to compare reasonably
well with Eq. {16); and the height of the sublayer, defined by the intersection
of the curves for the viscous and turbulent regions, is seen to be larger by
two or three times than for Newtonian fluids. Again the data appear to lie

wholly in the turbulent region.

Figures 13 and 14 present velocity profiles for 0.l and 0.2 percent J-2P
solutions. Typical values ol k for each of the two pipe dlameters were chosen
to calculate Eq. (16). The data are seen to lie between the curves for the
turbulent region for the 0.1 perceni data and generally below the turbulent
curves for the 0.2 percent data. In general, however, both sets of data and
both sets of semi-logarithmic curves indicate a thicker viscous sublayer, cal-
culated from the intersection of Egs. (8) and (16), than for Newtonian fluids.
An increase in sublayer thickness with increasing Reynolds number (or velocity)
also is shown by the data, indicating an increased stability, although not to
the extent predicted by the analysis. The slopes of the profile in the tur-
bulent region is predicted reasonably well by the analysis and the experimental
mixing length coefficient.

Figures 15 and 16 present data for the most viscous and presumably most
elastic fluids, 0.4 percent J-2P and O.4 percent CMC-70. These data show
reasonable agreement with, and a trend toward, the expression for the viscous
sublayer as given by Eq. (8). Here again the data show increased stability by
a thickening of the sublayer, although not to the extent predicted, and the
slope of the turbulent profile agrees with the slope predicted.
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DISCUSSION AND CONCLUSIONS

The results of the analysis and the experiments with turbulent shear flow
of elastico-viscous fluids can now be discussed. It should be pointed out
again that the experimental data were analyzed in terms of concepts proved
successful for Newtonian fluids, but that the elastic properties of the fluids
were not used explicitly. This approach first enabled a comparison to be made
between turbulent flow of Newtonian and elastico-viscous fluids, and then made

it possible to draw conclusions about the details of the flow.

The Prandtl mixing length concept made it possible to relate the data
from the turbulent flow experiments to the effects of elasticity; however, the
resulting analysis will be of practical value in predicting the velocity profile
only if the relation between the elastic properties and the mixing length constant
is found. This is evident from the experimentally observed variation of the

mixing length constant.

With this limitation in mind, it can be stated that the velocity profiles
predicted for the two assumed regions of flow in the turbulent shear layer
from mixing length and stability considerations agree reasonably well with
the experimental data. The velocity profiles represent generalizations of
expressions for Newtonian and purely viscous non-Newtonian fluids, and agree

with data for Newtonian fluids.

The experimental data appear to show an over-all increased stability to
production of turbulence for the elastico-viscous fluids. This is shown both
in the friction factor plots, where a more gradual transition from laminar to
turbulent flow is shown, particularly for the higher concentrations of the
polymer (and presumsbly greater elasticity); and in the velocity profile plots,
where the transition region between the sublayer and the fully turbulent re-

gion may become a large part of the total shear layer.

Perhaps one of the most interesting results of the experiments is the
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fact that the viscous sublayer, as defined in the analysis, was thicker than
for Newtonian or purely viscous non-Newtonian fluids for all of the elastico-
viscous velocity profiles examined. Accoirding to the analysis, this is a re-
sult of increased stability as calculated from the mixing length constant.

The range of variables of the experiments was such that no definitive
statements can be made regarding variations of the results with Reynolds
number. In general, it appears that the frictional drag reduction and the
viscous sublayer thickness increase with Reynolds numbers. This coupling
between the drag reduction and sublayer thickness also appears as the effect
of pipe diameter, which is noted in both types of data. The effect of dia-
meter, while not understood at this time, is apparently an additional scale
effect due to the presence of the constraining wall in a mixing process modi-
fied by the fluid elasticity. The fact that the mixing length constant shows
an effect of diameter is further indication of this additional scale effect
on the mixiﬁg itself,

The following conclusions can then be summarized regarding the analysis
and experiments:

(1) Turbulent shear flow of Newtonian fluid solvents with small con-
centrations of high molecular weight polymers, presumed to be
elastico-viscous fluids, demonstrate a reduction in frictional
drag over that of the Newtonian solvents. Further, the drag
reduction increases with increasing Reynolds number, although

there is a pronounced effect of diameter on the drag results.

(2) A viscous sublayer, always thicker than for purely viscous fluids,
lies adjacent to the constraining wall for these fluids.

(3) The variation of velocity with distance from the wall approaches,
near the wall, a relation derived for a constant shear stress flow

and which is based on the viscous fluid properties only.

(4) The variation of velocity with distance from the wall approaches,
far from the wall, a relation based on the Prandtl mixing length
concept and a variable mixing length coefficient.
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(5) ‘The increase in the thickness of the viscous sublayer noted in the
data is predicted by a stability criterion stating that turbulence
occurs when the ratio of turbulent to laminar shear stresses reaches
a universally constant value. The predicted values of the viscous
sublayer thickness do not agree with the data for the highest polymer
concentrations (and elasticity). This lack of agreement is thought
to be due to one or both of two possible factors:

(a) An independent effect of pipe diameter, or the proximity of the
opposite constraining walls,for fluids with higher elasticity
and stability.

(v) A dependence of the transition criterion on the non-linear
shear stress relation, not taken into account in the present

criterion.

These possibllities are'being investigated through further analysis

of the present data, as well as further experiments.
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‘l’ | SYMBOLS

non-Newtonian fluid property, defined by Eq. (1)

a

A virtual kinematic viscosity, defined by Eq. (2)

Cc concentration, percent by weight

D pipe diameter

f friction factor, defined by Eq. (18)

k mixing length constant, defined by Eq. (5)

] mixing length, defined by Eq. (3)

n non-Newtonian fluid index, defined by Eq. (1)

R pipe radius

Re solvent Reynolds number defined by Eq. (19)

Re purely viscous Reynolds number, defined by Egs. (21), (22)
velocity in the x-direction

. friction velocity (To/p)%
v velocity in the y-directiocn
W velocity in the z-direction
‘ x streamwise coordinate

y normal coordinate, distance from the wall

z coordinate normal to the x-y plane

€ virtual viscosity, defined by Eq. (2)

T shear stress

P density

¢ non-dimensional velocity, defined by Eq. (8)

1, non-dimensional normal coordinate, defined by Eq. (8)

v, constant, defined by Egs. (21), (22)

Subscrigts

L edge of the viscous sublayer
o} wall

t turbulent

Superscripts

- time averaged quantity
. . A spacially averaged quantity
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